Graphs with girth 9 and without longer odd holes are 3-colorable

Rong Wu

School of Mathematical Sciences Shanghai Jiao Tong University

Joint work with Yan Wang

January 4, 2024

A *k-coloring* of a graph G is a mapping $\varphi: V(G) \to S$, where $S = [k] = \{1, 2, \dots, k\}$ is the color set.

A *k-coloring* of a graph G is a mapping $\varphi: V(G) \to S$, where $S = [k] = \{1, 2, \dots, k\}$ is the color set.

- ► A k-coloring is proper if adjacent vertices have distinct colors.
- \triangleright A graph is k-colorable if it has a proper k-coloring.
- ▶ $\chi(G) =: \min\{k\}$ such that G is k-colorable.

A *clique* in a graph G is a subgraph induced by a set of pairwise adjacent vertices.

- ▶ The size of a largest clique in G is called the *clique number* of G, and is denoted by $\omega(G)$.
- ▶ In 1941, Brooks proved that if G is a graph with $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \Delta(G)$.

A *clique* in a graph G is a subgraph induced by a set of pairwise adjacent vertices.

- ▶ The size of a largest clique in G is called the *clique number* of G, and is denoted by $\omega(G)$.
- ▶ In 1941, Brooks proved that if G is a graph with $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \Delta(G)$.
- ▶ The computation of both graph parameters $\omega(G)$ and $\chi(G)$ is NP-hard.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Theorem 2 [Erdös, 1959, Can. J. Math]

For any positive integers $k, l \ge 3$, there exists a graph G with girth $g(G) \ge l$ and chromatic number $\chi(G) \ge k$.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Theorem 2 [Erdös, 1959, Can. J. Math]

For any positive integers $k, l \ge 3$, there exists a graph G with girth $g(G) \ge l$ and chromatic number $\chi(G) \ge k$.

Now, the interest thing is to search the hereditary family of graphs attaining equality for the clique number ω and the chromatic number χ of its members.

Perfect graphs

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G.

Berge contributed for the fascinating class of perfect graphs more than 70 years ago two inspiring conjectures: the perfect graph conjecture proven by Lovász and the strong perfect graph conjecture proven by Chudnovsky, Robertson, Seymour and Thomas.

Perfect graphs

Perfect Graph Theorem [Lovász, 1972, JCTB]

A graph is perfect if and only if its complement is likewise perfect.

Perfect graphs

Perfect Graph Theorem [Lovász, 1972, JCTB]

A graph is perfect if and only if its complement is likewise perfect.

Strong Perfect Graph Theorem [Chudnovsky et al., 2006, Ann.]

A graph is perfect if and only if it contains neither an odd hole nor its complement.

▶ In 1987, Gyárfás has introduced the concept of χ -bound functions thereby extending the notion of perfectness.

- ▶ In 1987, Gyárfás has introduced the concept of χ -bound functions thereby extending the notion of perfectness.
- ▶ Given a class $\mathcal G$ of graphs, we call that a function $f:\mathbb N_0\to\mathbb N_0$ is a χ -binding function if $\chi(\mathcal G)\leq f(\omega(\mathcal G))$ for each graph $\mathcal G\in\mathcal G$.

- ▶ In 1987, Gyárfás has introduced the concept of χ -bound functions thereby extending the notion of perfectness.
- ▶ Given a class $\mathcal G$ of graphs, we call that a function $f:\mathbb N_0\to\mathbb N_0$ is a χ -binding function if $\chi(\mathcal G)\leq f(\omega(\mathcal G))$ for each graph $\mathcal G\in\mathcal G$.
- ▶ Let \mathcal{F} be a family of graphs. We say that G is \mathcal{F} -free if it does not contain any induced subgraph which is isomorphic to a graph in \mathcal{F} .

Two directions

- forbid acyclic subgraphs;
- ► forbid unlimited cycles.

A hole in a graph is an induced cycle of length at least 4. A hole is said to be *odd* (resp. *even*) if it has odd (resp. even) length.

even hole-free graphs [Addario-Berry et al., 2008, JCTB]

$$\chi(G) \leq 2\omega(G) - 1.$$

A hole in a graph is an induced cycle of length at least 4. A hole is said to be *odd* (resp. *even*) if it has odd (resp. even) length.

even hole-free graphs [Addario-Berry et al., 2008, JCTB]

$$\chi(G) \leq 2\omega(G) - 1.$$

even hole-free graphs [Chudnovsky and Seymour, 2023, JCTB]

$$\chi(G) \leq 2\omega(G) - 1.$$

odd hole-free graphs [Scott and Seymour, 2016, JCTB]

$$\chi(G) \le \frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}.$$

odd hole-free graphs [Scott and Seymour, 2016, JCTB]

$$\chi(G) \le \frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}.$$

Conjecture [Hoáng and McDiarmid, DM 2002]

For an odd hole free graph G, $\chi(G) \leq 2^{\omega(G)-1}$.

odd hole-free graphs [Scott and Seymour, 2016, JCTB]

$$\chi(G) \le \frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}.$$

Conjecture [Hoáng and McDiarmid, DM 2002]

For an odd hole free graph G, $\chi(G) \leq 2^{\omega(G)-1}$.

Conjecture [Hoáng, 2018, JGT]

For an odd hole free graph G, $\chi(G) \leq \frac{(\omega+1)\omega}{2}$.

The girth of a graph G, denoted by g(G), is the minimum length of a cycle in G.

Let $l \ge 2$ be an integer. Let \mathcal{G}_l denote the family of graphs that have girth 2l+1 and have no odd holes of length at least 2l+3.

The graphs in G_2 are called *pentagraphs*, and the graphs in G_3 are called *heptagraphs*.

Conj [Plummer and Zha, 2014, EJC]

Every pentagraph is 3-colorable.

Conj [Plummer and Zha, 2014, EJC]

Every pentagraph is 3-colorable.

pentagraphs [Xu et al., 2017, EJC]

$$\chi(G) = 4.$$

 G_I , $I \ge 2$ [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{l>2} \mathcal{G}_l$ are 4-colorable.

 G_I , $I \ge 2$ [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{l>2} \mathcal{G}_l$ are 4-colorable.

the levelling of G

Conj [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{l>2} \mathcal{G}_l$ are 3-colorable.

pentagraphs [Chudnovsky and Seymour, 2023, JGT]

Pentagraphs are 3-colorable.

pentagraphs [Chudnovsky and Seymour, 2023, JGT]

Pentagraphs are 3-colorable.

heptagraphs [Wu et al., 2024+]

Heptagraphs are 3-colorable.

pentagraphs [Chudnovsky and Seymour, 2023, JGT]

Pentagraphs are 3-colorable.

heptagraphs [Wu et al., 2024+]

Heptagraphs are 3-colorable.

 $G_{I}, I \geq 5$ [Chen, 2024+]

All graphs in $\bigcup_{l>5} \mathcal{G}_l$ are 3-colorable.

Our results

Theorem 1 [Wang and Wu, 2024+]

Graphs in \mathcal{G}_4 are 3-colorable.

A parity star-cutset is a cutset of $X \subseteq V(G)$ such that X has a vertex, say x, which is adjacent to every other vertex in X, and G - X has a component, say A, such that every two vertices in $X \setminus \{x\}$ are joint by an induced even path with interior in V(A).

If A can be chosen such that in addition, x has a neighbour in V(A), X is called a strong parity star-cutset.

pentagraphs [Chudnovsky and Seymour, 2023, JGT]

Let G be a pentagraph. Then either

- ▶ *G* is a bipartite; or
- G is isomorphic to the Petersen graph; or
- G has a vertex of degree at most two; or
- ightharpoonup G admits a P_3 -cutset or a strong parity star-cutset.

heptagraphs [Wu et al., 2024+]

Let G be a heptagraph. Then either

- ► G is a bipartite; or
- G has a vertex of degree at most two; or
- \triangleright G admits a P_3 -cutset or a parity star-cutset.

$\mathcal{G}_{I}, I \geq$ 4 [Chen; Wang and Wu, 2024+]

Let $G \in \bigcup_{l \ge 4} \mathcal{G}_l$. Assume G has no 2-edge-cut or K_2 -cut. Then one of the following holds.

- 1) G has an odd K_4 -subdivision.
- 2) G contains a balanced K_4 -subdivision of type (1,2).
- 3) G has a P_3 -cut.
- 4) G has a vertex of degree at most two.

Let $H = (u_1, u_2, u_3, u_4, P_1, P_2, Q_1, Q_2, L_1, L_2)$ be a K_4 -subdivision such that u_1, u_2, u_3, u_4 are degree-3 vertices of H and P_1 is a (u_1, u_2) -path, P_2 is a (u_3, u_4) -path, Q_1 is a (u_2, u_3) -path, Q_2 is a (u_1, u_4) -path, L_1 is a (u_1, u_3) -path, and L_2 is a (u_2, u_4) -path. We call $P_1, P_2, Q_1, Q_2, L_1, L_2$ arrises of H. Let $C_1 := P_1 \cup Q_1 \cup L_1$, $C_2 := P_1 \cup Q_2 \cup L_2$, $C_3 = P_2 \cup Q_1 \cup L_2$ and $C_4 := C_1 \triangle C_2 \triangle C_3$ be four holes in H.

We call that H is an odd K_4 -subdivision if C_1 , C_2 , C_3 and C_4 are odd holes. If C_1 and C_2 are odd holes, C_3 and C_4 are even holes, $|Q_1| = 1$ and $|L_2| \ge 2$, then we call H a balanced K_4 -subdivision of type (1,2).

Lemma 1 [Chen, 2024+]

For any number $k \ge 4$, each k-vertex-critical graph has no 2-edge-cut.

Lemma 1 [Chen, 2024+]

For any number $k \ge 4$, each k-vertex-critical graph has no 2-edge-cut.

Lemma 2 [Chudnovsky and Seymour, 2023, JGT]

For any number $l \ge 2$, every 4-vertex-critical graph in G_l has neither K_2 -cut or P_3 -cut.

Lemma 3 [Wang and Wu, 2024+]

Let $I \geq 4$ be an integer. For each graph G in \mathcal{G}_I , suppose G is 4-vertex-critical, either G has no odd K_4 -subdivision or G has an odd K_4 -subdivision $H = (u_1, u_2, u_3, u_4, P_1, P_2, Q_1, Q_2, L_1, L_2)$ such that every minimal direct connection (v_1, v_2) -path linking $H \setminus P_2^*$ and P_2^* must have $N_H(v_1) = N_{H \setminus P_2^*}(v_1) = \{u_3\}$ or $\{u_4\}$ and $N_H(v_2) = N_{P_2^*}(v_2) = N_{P_2^*}(N_H(v_1))$.

H with its direct connection

Theorem 1 [Wang and Wu, 2024+]

Let $l \ge 4$ be an integer. For each graph G in G_l , if G is 4-vertex-critical, then G has no odd K_4 -subdivisions.

Theorem 1 [Wang and Wu, 2024+]

Let $l \geq 4$ be an integer. For each graph G in G_l , if G is 4-vertex-critical, then G has no odd K_4 -subdivisions.

Lemma 4 [Chen, 2024+]

Let $l \ge 4$ be an integer and G be a graph in G_l . If G is 4-vertex-critical, then G does not contain a balanced K_4 -subdivision of type (1,2).

Theorem 2 [Wang and Wu, 2024+]

Let $G \in \mathcal{G}_4$. Assume G has no 2-edge-cut or K_2 -cut. Then one of the following holds.

- 1) G has an odd K_4 -subdivision.
- 2) G contains a balanced K_4 -subdivision of type (1,2).
- 3) G has a P_3 -cut.
- 4) G has a vertex of degree at most two.

It is clearly that G contains a hole C. The key to find the P_3 -cut of G is relabeling the indicies of V(C).

Open problems

Conj [Chen, 2024+]

For an integer $l \ge 2$ and a graph G with g(G) = 2l + 1, if the set of lengths of odd holes of G have k members, then G is (k + 2)-colorable.

Open problems

Question [Xu, 2024+]

Let $r \geq 2$ be an integer, and let \mathcal{H}_r be the set of graphs with girth at least 2r which has no even hole of length at least 2r+2. What is the smallest integer c_r such that $\chi(G) \leq c_r$ for every graph $G \in \mathcal{H}_r$? Is it true that $c_2 = 3$?

Thank you!