Graphs with girth 9 and without longer odd holes are 3-colorable

Rong Wu

School of Mathematical Sciences
Shanghai Jiao Tong University
Joint work with Yan Wang

January 4, 2024

Coloring of Graphs

A k-coloring of a graph G is a mapping $\varphi: V(G) \rightarrow S$, where $S=[k]=\{1,2, \cdots, k\}$ is the color set.

Coloring of Graphs

A k-coloring of a graph G is a mapping $\varphi: V(G) \rightarrow S$, where $S=[k]=\{1,2, \cdots, k\}$ is the color set.

- A k-coloring is proper if adjacent vertices have distinct colors.
- A graph is k-colorable if it has a proper k-coloring.
- $\chi(G)=: \min \{k\}$ such that G is k-colorable.

Coloring of Graphs

A clique in a graph G is a subgraph induced by a set of pairwise adjacent vertices.

- The size of a largest clique in G is called the clique number of G, and is denoted by $\omega(G)$.
- $\omega(G) \leq \chi(G) \leq \Delta(G)+1$.
- In 1941, Brooks proved that if G is a graph with $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \Delta(G)$.

Coloring of Graphs

A clique in a graph G is a subgraph induced by a set of pairwise adjacent vertices.

- The size of a largest clique in G is called the clique number of G, and is denoted by $\omega(G)$.
- $\omega(G) \leq \chi(G) \leq \Delta(G)+1$.
- In 1941, Brooks proved that if G is a graph with $\Delta(G) \geq 3$ and $\omega(G) \leq \Delta(G)$, then $\chi(G) \leq \Delta(G)$.
- The computation of both graph parameters $\omega(G)$ and $\chi(G)$ is NP-hard.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Theorem 2 [Erdös, 1959, Can. J. Math]

For any positive integers $k, I \geq 3$, there exists a graph G with girth $g(G) \geq I$ and chromatic number $\chi(G) \geq k$.

Erdös

In general as shown by Erdös the gap between the clique number ω and the chromatic number χ of a graph can be arbitrarily large.

Theorem 2 [Erdös, 1959, Can. J. Math]

For any positive integers $k, I \geq 3$, there exists a graph G with girth $g(G) \geq I$ and chromatic number $\chi(G) \geq k$.

- Now, the interest thing is to search the hereditary family of graphs attaining equality for the clique number ω and the chromatic number χ of its members.

Perfect graphs

A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G.

Berge contributed for the fascinating class of perfect graphs more than 70 years ago two inspiring conjectures: the perfect graph conjecture proven by Lovász and the strong perfect graph conjecture proven by Chudnovsky, Robertson, Seymour and Thomas.

Perfect graphs

Perfect Graph Theorem [Lovász, 1972, JCTB]

A graph is perfect if and only if its complement is likewise perfect.

Perfect graphs

Perfect Graph Theorem [Lovász, 1972, JCTB]

A graph is perfect if and only if its complement is likewise perfect.

Strong Perfect Graph Theorem [Chudnovsky et al.,2006,Ann.]
A graph is perfect if and only if it contains neither an odd hole nor its complement.

χ-binding functions

- In 1987, Gyárfás has introduced the concept of χ-bound functions thereby extending the notion of perfectness.

χ-binding functions

- In 1987, Gyárfás has introduced the concept of χ-bound functions thereby extending the notion of perfectness.
- Given a class \mathcal{G} of graphs, we call that a function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ is a χ-binding function if $\chi(G) \leq f(\omega(G))$ for each graph $G \in \mathcal{G}$.

χ-binding functions

- In 1987, Gyárfás has introduced the concept of χ-bound functions thereby extending the notion of perfectness.
- Given a class \mathcal{G} of graphs, we call that a function $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ is a χ-binding function if $\chi(G) \leq f(\omega(G))$ for each graph $G \in \mathcal{G}$.
- Let \mathcal{F} be a family of graphs. We say that G is \mathcal{F}-free if it does not contain any induced subgraph which is isomorphic to a graph in \mathcal{F}.

χ-binding functions

Two directions

- forbid acyclic subgraphs;
- forbid unlimited cycles.

Known results

A hole in a graph is an induced cycle of length at least 4. A hole is said to be odd (resp. even) if it has odd (resp. even) length.
even hole-free graphs [Addario-Berry et al., 2008, JCTB]
$\chi(G) \leq 2 \omega(G)-1$.

Known results

A hole in a graph is an induced cycle of length at least 4. A hole is said to be odd (resp. even) if it has odd (resp. even) length.
even hole-free graphs [Addario-Berry et al., 2008, JCTB]
$\chi(G) \leq 2 \omega(G)-1$.
even hole-free graphs [Chudnovsky and Seymour, 2023, JCTB]
$\chi(G) \leq 2 \omega(G)-1$.

Known results

odd hole-free graphs [Scott and Seymour, 2016, JCTB]
$\chi(G) \leq \frac{2^{2 \omega(G)+2}}{48(\omega(G)+2)}$.

Known results

odd hole-free graphs [Scott and Seymour, 2016, JCTB]
$\chi(G) \leq \frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}$.

Conjecture [Hoáng and McDiarmid, DM 2002]

For an odd hole free graph $G, \chi(G) \leq 2^{\omega(G)-1}$.

Known results

odd hole-free graphs [Scott and Seymour, 2016, JCTB]
$\chi(G) \leq \frac{2^{2^{\omega(G)+2}}}{48(\omega(G)+2)}$.

Conjecture [Hoáng and McDiarmid, DM 2002]
For an odd hole free graph $G, \chi(G) \leq 2^{\omega(G)-1}$.

Conjecture [Hoáng, 2018, JGT]
For an odd hole free graph $G, \chi(G) \leq \frac{(\omega+1) \omega}{2}$.

Known results

The girth of a graph G, denoted by $g(G)$, is the minimum length of a cycle in G.

Let $I \geq 2$ be an integer. Let \mathcal{G}_{I} denote the family of graphs that have girth $2 l+1$ and have no odd holes of length at least $2 l+3$.

The graphs in \mathcal{G}_{2} are called pentagraphs, and the graphs in \mathcal{G}_{3} are called heptagraphs.

Known results

Conj [Plummer and Zha, 2014, EJC]

Every pentagraph is 3 -colorable.

Known results

Conj [Plummer and Zha, 2014, EJC]
Every pentagraph is 3-colorable.

pentagraphs [Xu et al., 2017, EJC]

$$
\chi(G)=4
$$

Known results

$\mathcal{G}_{I}, I \geq 2$ [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{I \geq 2} \mathcal{G}_{I}$ are 4-colorable.

Known results

$\mathcal{G}_{I}, I \geq 2$ [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{I \geq 2} \mathcal{G}_{I}$ are 4-colorable.

the levelling of G

Known results

Conj [Wu et al., 2022, SC(in Chinese)]

Graphs in $\bigcup_{l \geq 2} \mathcal{G}_{l}$ are 3 -colorable.

Known results

pentagraphs [Chudnovsky and Seymour, 2023, JGT]
Pentagraphs are 3-colorable.

Known results

pentagraphs [Chudnovsky and Seymour, 2023, JGT]
Pentagraphs are 3-colorable.
heptagraphs [Wu et al., 2024+]
Heptagraphs are 3-colorable.

Known results

pentagraphs [Chudnovsky and Seymour, 2023, JGT]
Pentagraphs are 3-colorable.
heptagraphs [Wu et al., 2024+]
Heptagraphs are 3-colorable.

$$
\mathcal{G}_{I}, I \geq 5 \text { [Chen, 2024+] }
$$

All graphs in $\bigcup_{I \geq 5} \mathcal{G}_{I}$ are 3-colorable.

Our results

Theorem 1 [Wang and Wu, 2024+]
Graphs in \mathcal{G}_{4} are 3-colorable.

Sketch of the proof

A parity star-cutset is a cutset of $X \subseteq V(G)$ such that X has a vertex, say x, which is adjacent to every other vertex in X, and $G-X$ has a component, say A, such that every two vertices in $X \backslash\{x\}$ are joint by an induced even path with interior in $V(A)$.

If A can be chosen such that in addition, x has a neighbour in $V(A), X$ is called a strong parity star-cutset.

Sketch of the proof

pentagraphs [Chudnovsky and Seymour, 2023, JGT]
Let G be a pentagraph. Then either

- G is a bipartite; or
- G is isomorphic to the Petersen graph; or
- G has a vertex of degree at most two; or
- G admits a P_{3}-cutset or a strong parity star-cutset.
heptagraphs [Wu et al., 2024+]
Let G be a heptagraph. Then either
- G is a bipartite; or
- G has a vertex of degree at most two; or
- G admits a P_{3}-cutset or a parity star-cutset.

Sketch of the proof

$\mathcal{G}_{I}, I \geq 4$ [Chen; Wang and Wu, 2024+]

Let $G \in \bigcup_{I \geq 4} \mathcal{G}_{I}$. Assume G has no 2-edge-cut or K_{2}-cut. Then one of the following holds.

1) G has an odd K_{4}-subdivision.
2) G contains a balanced K_{4}-subdivision of type $(1,2)$.
3) G has a P_{3}-cut.
4) G has a vertex of degree at most two.

Sketch of the proof

Let $H=\left(u_{1}, u_{2}, u_{3}, u_{4}, P_{1}, P_{2}, Q_{1}, Q_{2}, L_{1}, L_{2}\right)$ be a K_{4}-subdivision such that $u_{1}, u_{2}, u_{3}, u_{4}$ are degree- 3 vertices of H and P_{1} is a $\left(u_{1}, u_{2}\right)$-path, P_{2} is a $\left(u_{3}, u_{4}\right)$-path, Q_{1} is a $\left(u_{2}, u_{3}\right)$-path, Q_{2} is a $\left(u_{1}, u_{4}\right)$-path, L_{1} is a $\left(u_{1}, u_{3}\right)$-path, and L_{2} is a $\left(u_{2}, u_{4}\right)$-path. We call $P_{1}, P_{2}, Q_{1}, Q_{2}, L_{1}, L_{2}$ arrises of H. Let $C_{1}:=P_{1} \cup Q_{1} \cup L_{1}$, $C_{2}:=P_{1} \cup Q_{2} \cup L_{2}, C_{3}=P_{2} \cup Q_{1} \cup L_{2}$ and $C_{4}:=C_{1} \triangle C_{2} \triangle C_{3}$ be four holes in H.

H

Sketch of the proof

H

We call that H is an odd K_{4}-subdivision if C_{1}, C_{2}, C_{3} and C_{4} are odd holes. If C_{1} and C_{2} are odd holes, C_{3} and C_{4} are even holes, $\left|Q_{1}\right|=1$ and $\left|L_{2}\right| \geq 2$, then we call H a balanced K_{4}-subdivision of type (1, 2).

Sketch of the proof

Lemma 1 [Chen, 2024+]
For any number $k \geq 4$, each k-vertex-critical graph has no 2-edge-cut.

Sketch of the proof

Lemma 1 [Chen, 2024+]
For any number $k \geq 4$, each k-vertex-critical graph has no 2-edge-cut.

Lemma 2 [Chudnovsky and Seymour, 2023, JGT]
For any number $I \geq 2$, every 4 -vertex-critical graph in \mathcal{G}_{I} has neither K_{2}-cut or P_{3}-cut.

Sketch of the proof

Lemma 3 [Wang and Wu, 2024+]

Let $I \geq 4$ be an integer. For each graph G in \mathcal{G}_{l}, suppose G is 4 -vertex-critical, either G has no odd K_{4}-subdivision or G has an odd K_{4}-subdivision $H=\left(u_{1}, u_{2}, u_{3}, u_{4}, P_{1}, P_{2}\right.$, $Q_{1}, Q_{2}, L_{1}, L_{2}$) such that every minimal direct connection $\left(v_{1}, v_{2}\right)$-path linking $H \backslash P_{2}^{*}$ and P_{2}^{*} must have $N_{H}\left(v_{1}\right)=$ $N_{H \backslash P_{2}^{*}}\left(v_{1}\right)=\left\{u_{3}\right\}$ or $\left\{u_{4}\right\}$ and $N_{H}\left(v_{2}\right)=N_{P_{2}^{*}}\left(v_{2}\right)=$ $N_{P_{2}^{*}}\left(N_{H}\left(v_{1}\right)\right)$.

Sketch of the proof

H with its direct connection

Sketch of the proof

Theorem 1 [Wang and Wu, 2024+]
Let $I \geq 4$ be an integer. For each graph G in \mathcal{G}_{I}, if G is 4-vertex-critical, then G has no odd K_{4}-subdivisions.

Sketch of the proof

Theorem 1 [Wang and Wu, 2024+]

Let $I \geq 4$ be an integer. For each graph G in \mathcal{G}_{I}, if G is 4-vertex-critical, then G has no odd K_{4}-subdivisions.

Lemma 4 [Chen, 2024+]
Let $I \geq 4$ be an integer and G be a graph in \mathcal{G}_{l}. If G is 4-vertex-critical, then G does not contain a balanced K_{4} subdivision of type $(1,2)$.

Sketch of the proof

Theorem 2 [Wang and Wu, 2024+]

Let $G \in \mathcal{G}_{4}$. Assume G has no 2-edge-cut or K_{2}-cut. Then one of the following holds.

1) G has an odd K_{4}-subdivision.
2) G contains a balanced K_{4}-subdivision of type $(1,2)$.
3) G has a P_{3}-cut.
4) G has a vertex of degree at most two.

It is clearly that G contains a hole C. The key to find the P_{3}-cut of G is relabeling the indicies of $V(C)$.

Open problems

Conj [Chen, 2024+]

For an integer $I \geq 2$ and a graph G with $g(G)=2 I+1$, if the set of lengths of odd holes of G have k members, then G is $(k+2)$-colorable.

Open problems

Question [Xu, 2024+]

Let $r \geq 2$ be an integer, and let \mathcal{H}_{r} be the set of graphs with girth at least $2 r$ which has no even hole of length at least $2 r+2$. What is the smallest integer c_{r} such that $\chi(G) \leq c_{r}$ for every graph $G \in \mathcal{H}_{r}$? Is it true that $c_{2}=3$?

